Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dig Dis Sci ; 69(4): 1200-1213, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38400886

RESUMO

BACKGROUND: Circular RNAs (CircRNAs) play essential roles in cancer occurrence as regulatory RNAs. However, circRNA-mediated regulation of gastric cancer (GC) remains poorly understood. AIM: The purpose of this study was to investigate the molecular mechanism of circSLC22A23 (hsa_circ_0075504) underlying GC occurrence. METHODS: CircSLC22A23 levels were first quantified by quantitative real-time reverse transcription-polymerase chain reaction in GC cell lines, 80 paired GC tissues and adjacent normal tissues, and 27 pairs of plasma samples from preoperative and postoperative patients with GC. Then circSLC22A23 was knocked-down with short hairpin RNA to analyze its oncogenic effects on the proliferation, migration, and invasion of GC cells. Finally, circRNA-binding proteins and their downstream target genes were identified by RNA pulldown, mass spectrometry, RNA immunoprecipitation, quantitative real-time reverse transcription-polymerase chain reaction, and Western blot assays. RESULTS: CircSLC22A23 was found to be highly expressed in GC cells, GC tissues, and plasma from GC patients. Knockdown of circSLC22A23 inhibited GC cell proliferation, migration and invasion. RNA pulldown and RNA immunoprecipitation assays verified the interaction between circSLC22A23 and heterogeneous nuclear ribonucleoprotein U (HNRNPU). Knockdown of circSLC22A23 decreased HNRNPU protein levels. Moreover, rescue assays showed that the tumor suppressive effect of circSLC22A23 knockdown was reversed by HNRNPU overexpression. Finally, epidermal growth factor receptor (EGFR) was found to be one of the downstream target genes of HNRNPU that was up regulated by circSLC22A23. CONCLUSION: CircSLC22A23 regulated the transcription of EGFR through activation of HNRNPU in GC cells, suggesting that circSLC22A23 may serve as a potential therapeutic target for the treatment of GC.


Assuntos
MicroRNAs , Neoplasias Gástricas , Humanos , RNA Circular , Neoplasias Gástricas/patologia , Ribonucleoproteínas Nucleares Heterogêneas Grupo U/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo U/metabolismo , Linhagem Celular Tumoral , RNA Interferente Pequeno , Receptores ErbB/metabolismo , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética
2.
Int J Biol Macromol ; 256(Pt 2): 128453, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38016613

RESUMO

Osteoarthritis (OA) is the most prevalent age-related and degenerative joint disease with limited treatment options. Previous studies have identified the therapeutic effects of mesenchymal stem cells (MSCs) therapy. Nevertheless, chronic inflammation impedes MSCs therapeutic effect. There have been reports suggesting that circular RNAs (circRNAs) are involved in OA and chondrogenesis. The combination of MSCs and circRNAs in therapies appears to be a promising option. In this study, we identified circIRAK3 as a significant regulator in cartilage degeneration and chondrogenesis through high-throughput sequencing analyses. We observed increased circIRAK3 in OA cartilage and during MSCs chondrogenesis. Knockdown of circIRAK3 resulted in excessive apoptosis, inhibited proliferation, and degradation of chondrocytes, along with the inhibition of MSCs chondrogenesis. Mechanistically, circIRAK3 bound to HNRNP U and competitively prevented its binding to IL-1ß, TNFα, and IL6 mRNA, thereby promoting mRNA degradation. Notably, circIRAK3 expression in plasma increased with higher OARSI scores. Intra-articular injection of adeno-associated virus-circIRAK3 delayed cartilage degeneration and reduced inflammation in DMM mouse model. Our study highlights a compensatory regulation network of circIRAK3 in chondrocytes in response to inflammation. CircIRAK3 has the potential to serve as a new therapeutic target for OA. Furthermore, therapies targeting circIRAK3 combined with MSCs hold promise.


Assuntos
Cartilagem Articular , Osteoartrite , Camundongos , Animais , Citocinas/genética , Citocinas/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas Grupo U/metabolismo , Osteoartrite/genética , Osteoartrite/terapia , Osteoartrite/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Circular/metabolismo , Retroalimentação , Condrogênese/genética , Inflamação/genética , Inflamação/metabolismo , Condrócitos
3.
Biol Open ; 12(10)2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37815090

RESUMO

Genetic variants affecting Heterogeneous Nuclear Ribonucleoprotein U (HNRNPU) have been identified in several neurodevelopmental disorders (NDDs). HNRNPU is widely expressed in the human brain and shows the highest postnatal expression in the cerebellum. Recent studies have investigated the role of HNRNPU in cerebral cortical development, but the effects of HNRNPU deficiency on cerebellar development remain unknown. Here, we describe the molecular and cellular outcomes of HNRNPU locus deficiency during in vitro neural differentiation of patient-derived and isogenic neuroepithelial stem cells with a hindbrain profile. We demonstrate that HNRNPU deficiency leads to chromatin remodeling of A/B compartments, and transcriptional rewiring, partly by impacting exon inclusion during mRNA processing. Genomic regions affected by the chromatin restructuring and host genes of exon usage differences show a strong enrichment for genes implicated in epilepsies, intellectual disability, and autism. Lastly, we show that at the cellular level HNRNPU downregulation leads to an increased fraction of neural progenitors in the maturing neuronal population. We conclude that the HNRNPU locus is involved in delayed commitment of neural progenitors to differentiate in cell types with hindbrain profile.


Assuntos
Ribonucleoproteínas Nucleares Heterogêneas Grupo U , Transtornos do Neurodesenvolvimento , Humanos , Cromatina , Ribonucleoproteínas Nucleares Heterogêneas Grupo U/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo U/metabolismo , Transtornos do Neurodesenvolvimento/genética , Neurogênese/genética , Rombencéfalo/metabolismo
4.
PLoS One ; 18(8): e0289599, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37540655

RESUMO

A human protein heterogeneous ribonucleoprotein U (hnRNP U) also known as Scaffold attachment factor A (SAF-A) and its orthologous rat protein SP120 are abundant and multifunctional nuclear protein that directly binds to both DNA and RNA. The C-terminal region of hnRNP U enriched with arginine and glycine is essential for the interaction with RNA and the N-terminal region of SAF-A termed SAP domain has been ascribed to the DNA binding. We have reported that rat hnRNP U specifically and cooperatively binds to AT-rich DNA called nuclear scaffold/matrix-associated region (S/MAR) although its detailed mechanism remained unclear. In the present study analysis of hnRNP U deletion mutants revealed for the first time that a C-terminal domain enriched with Arg-Gly (defined here as 'RG domain') is predominantly important for the S/MAR-selective DNA binding activities. RG domain alone directly bound to S/MAR and coexistence with the SAP domain exerted a synergistic effect. The binding was inhibited by netropsin, a minor groove binder with preference to AT pairs that are enriched in S/MAR, suggesting that RG domain interacts with minor groove of S/MAR DNA. Interestingly, excess amounts of RNA attenuated the RG domain-dependent S/MAR-binding of hnRNP U. Taken together, hnRNP U may be the key element for the RNA-regulated recognition of S/MAR DNA and thus contributing to the dynamic structural changes of chromatin compartments.


Assuntos
RNA , Ribonucleoproteínas , Humanos , Ratos , Animais , Ribonucleoproteínas/metabolismo , RNA/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas Grupo U/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo U/metabolismo , Arginina , Ribonucleoproteínas Nucleares Heterogêneas , DNA/metabolismo
5.
Metabolism ; 146: 155661, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37454871

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease worldwide; however, the underlying mechanisms remain poorly understood. FAM3D is a member of the FAM3 family; however, its role in hepatic glycolipid metabolism remains unknown. Serum FAM3D levels are positively correlated with fasting blood glucose levels in patients with diabetes. Hepatocytes express and secrete FAM3D, and its expression is increased in steatotic human and mouse livers. Hepatic FAM3D overexpression ameliorated hyperglycemia and steatosis in obese mice, whereas FAM3D-deficient mice exhibited exaggerated hyperglycemia and steatosis after high-fat diet (HFD)-feeding. In cultured hepatocytes, FAM3D overexpression or recombinant FAM3D protein (rFAM3D) treatment reduced gluconeogenesis and lipid deposition, which were blocked by anti-FAM3D antibodies or inhibition of its receptor, formyl peptide receptor 1 (FPR1). FPR1 overexpression suppressed gluconeogenesis and reduced lipid deposition in wild hepatocytes but not in FAM3D-deficient hepatocytes. The addition of rFAM3D restored FPR1's inhibitory effects on gluconeogenesis and lipid deposition in FAM3D-deficient hepatocytes. Hepatic FPR1 overexpression ameliorated hyperglycemia and steatosis in obese mice. RNA sequencing and DNA pull-down revealed that the FAM3D-FPR1 axis upregulated the expression of heterogeneous nuclear ribonucleoprotein U (hnRNP U), which recruits the glucocorticoid receptor (GR) to the promoter region of the short-chain acyl-CoA dehydrogenase (SCAD) gene, promoting its transcription to enhance lipid oxidation. Moreover, FAM3D-FPR1 axis also activates calmodulin-Akt pathway to suppress gluconeogenesis in hepatocytes. In conclusion, hepatocyte-secreted FAM3D activated the FPR1-hnRNP U-GR-SCAD pathway to enhance lipid oxidation in hepatocytes. Under obesity conditions, increased hepatic FAM3D expression is a compensatory mechanism against dysregulated glucose and lipid metabolism.


Assuntos
Hiperglicemia , Hepatopatia Gordurosa não Alcoólica , Animais , Humanos , Camundongos , Butiril-CoA Desidrogenase/metabolismo , Dieta Hiperlipídica , Hepatócitos/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas Grupo U/metabolismo , Hiperglicemia/metabolismo , Metabolismo dos Lipídeos , Lipídeos , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Obesos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Receptores de Formil Peptídeo/metabolismo , Receptores de Glucocorticoides/metabolismo
6.
Bioessays ; 45(9): e2300039, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37439444

RESUMO

Heterogeneous nuclear ribonucleoprotein U (HNRNPU) is a nuclear protein that plays a crucial role in various biological functions, such as RNA splicing and chromatin organization. HNRNPU/scaffold attachment factor A (SAF-A) activities are essential for regulating gene expression, DNA replication, genome integrity, and mitotic fidelity. These functions are critical to ensure the robustness of developmental processes, particularly those involved in shaping the human brain. As a result, HNRNPU is associated with various neurodevelopmental disorders (HNRNPU-related neurodevelopmental disorder, HNRNPU-NDD) characterized by developmental delay and intellectual disability. Our research demonstrates that the loss of HNRNPU function results in the death of both neural progenitor cells and post-mitotic neurons, with a higher sensitivity observed in the former. We reported that HNRNPU truncation leads to the dysregulation of gene expression and alternative splicing of genes that converge on several signaling pathways, some of which are likely to be involved in the pathology of HNRNPU-related NDD.


Assuntos
Transtornos do Neurodesenvolvimento , Humanos , Transtornos do Neurodesenvolvimento/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo U/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo U/metabolismo , Encéfalo/metabolismo , Genoma , Splicing de RNA
7.
Cell Rep ; 42(3): 112284, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36943867

RESUMO

B cells generate functionally different classes of antibodies through class-switch recombination (CSR), which requires classical non-homologous end joining (C-NHEJ) to join the DNA breaks at the donor and acceptor switch (S) regions. We show that the RNA-binding protein HNRNPU promotes C-NHEJ-mediated S-S joining through the 53BP1-shieldin DNA-repair complex. Notably, HNRNPU binds to the S region RNA/DNA G-quadruplexes, contributing to regulating R-loop and single-stranded DNA (ssDNA) accumulation. HNRNPU is an intrinsically disordered protein that interacts with both C-NHEJ and R-loop complexes in an RNA-dependent manner. Strikingly, recruitment of HNRNPU and the C-NHEJ factors is highly sensitive to liquid-liquid phase separation inhibitors, suggestive of DNA-repair condensate formation. We propose that HNRNPU facilitates CSR by forming and stabilizing the C-NHEJ ribonucleoprotein complex and preventing excessive R-loop accumulation, which otherwise would cause persistent DNA breaks and aberrant DNA repair, leading to genomic instability.


Assuntos
Proteínas de Ligação a DNA , Estruturas R-Loop , DNA , Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades , DNA de Cadeia Simples , Proteínas de Ligação a DNA/metabolismo , Switching de Imunoglobulina , Isotipos de Imunoglobulinas/genética , RNA , Ribonucleoproteínas Nucleares Heterogêneas Grupo U/metabolismo
8.
JCI Insight ; 8(5)2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36883566

RESUMO

The adult mammalian heart has limited regenerative capacity, while the neonatal heart fully regenerates during the first week of life. Postnatal regeneration is mainly driven by proliferation of preexisting cardiomyocytes and supported by proregenerative macrophages and angiogenesis. Although the process of regeneration has been well studied in the neonatal mouse, the molecular mechanisms that define the switch between regenerative and nonregenerative cardiomyocytes are not well understood. Here, using in vivo and in vitro approaches, we identified the lncRNA Malat1 as a key player in postnatal cardiac regeneration. Malat1 deletion prevented heart regeneration in mice after myocardial infarction on postnatal day 3 associated with a decline in cardiomyocyte proliferation and reparative angiogenesis. Interestingly, Malat1 deficiency increased cardiomyocyte binucleation even in the absence of cardiac injury. Cardiomyocyte-specific deletion of Malat1 was sufficient to block regeneration, supporting a critical role of Malat1 in regulating cardiomyocyte proliferation and binucleation, a landmark of mature nonregenerative cardiomyocytes. In vitro, Malat1 deficiency induced binucleation and the expression of a maturation gene program. Finally, the loss of hnRNP U, an interaction partner of Malat1, induced similar features in vitro, suggesting that Malat1 regulates cardiomyocyte proliferation and binucleation by hnRNP U to control the regenerative window in the heart.


Assuntos
Coração , Ribonucleoproteínas Nucleares Heterogêneas Grupo U , Infarto do Miocárdio , Miócitos Cardíacos , RNA Longo não Codificante , Regeneração , Animais , Camundongos , Coração/fisiologia , Coração/fisiopatologia , Traumatismos Cardíacos/genética , Traumatismos Cardíacos/metabolismo , Traumatismos Cardíacos/fisiopatologia , Ribonucleoproteínas Nucleares Heterogêneas Grupo U/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo U/metabolismo , Macrófagos/metabolismo , Macrófagos/fisiologia , Mamíferos , Infarto do Miocárdio/genética , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/fisiopatologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/fisiologia , Neovascularização Fisiológica/genética , Neovascularização Fisiológica/fisiologia , Regeneração/genética , Regeneração/fisiologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
9.
Clin Immunol ; 247: 109234, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36649749

RESUMO

Obesity is a complicated metabolic disease characterized by meta-inflammation in adipose tissues. In this study, we explored the roles of a new long non-coding RNA (lncRNA), HEM2ATM, which is highly expressed in adipose tissue M2 macrophages, in modulating obesity-associated meta-inflammation and insulin resistance. HEM2ATM expression decreased significantly in adipose tissue macrophages (ATMs) obtained from epididymal adipose tissues of high-fat diet (HFD)-induced obese mice. Overexpression of macrophage HEM2ATM improved meta-inflammation and insulin resistance in the adipose tissues of HFD-fed mice. Functionally, HEM2ATM negatively regulated the production of pro-inflammatory cytokines tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in macrophages. Mechanistically, HEM2ATM bound to heterogeneous nuclear ribonucleoprotein U (hnRNP U), suppressed hnRNP U translocation from the nucleus to the cytoplasm, hindered the function of cytoplasmic hnRNP U on TNF-α and IL-6 mRNA stabilization, and decreased the secretion of TNF-α and IL-6. Collectively, HEM2ATM is a novel suppressor of obesity-associated meta-inflammation and insulin resistance.


Assuntos
Resistência à Insulina , RNA Longo não Codificante , Camundongos , Animais , Ribonucleoproteínas Nucleares Heterogêneas Grupo U/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Resistência à Insulina/genética , Interleucina-6/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Tecido Adiposo , Inflamação/metabolismo , Obesidade/genética , Obesidade/complicações , Camundongos Endogâmicos C57BL
10.
Cell Death Dis ; 13(11): 940, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36347834

RESUMO

Triple-negative breast cancer (TNBC) is a great detriment to women's health due to the lack of effective therapeutic targets. In this study, we employed an integrated genetic screen to identify a pivotal oncogenic factor, heterogeneous nuclear ribonucleoprotein U (HNRNPU), which is required for the progression of TNBC. We elucidated the pro-oncogenic role of HNRNPU, which can induce the proliferation and migration of TNBC cells via its association with DEAD box helicase 5 (DDX5) protein. Elevated levels of the HNRNPU-DDX5 complex prohibited the intron retention of minichromosome maintenance protein 10 (MCM10) pre-mRNA, decreased nonsense-mediated mRNA decay, and activated Wnt/ß-catenin signalling; on the other hand, HNRNPU-DDX5 is located in the transcriptional start sites (TSS) of LIM domain only protein 4 (LMO4) and its upregulation promoted the transcription of LMO4, consequently activating PI3K-Akt-mTOR signalling. Our data highlight the synergetic effects of HNRNPU in RNA transcription and splicing in regulating cancer progression and suggest that HNRNPU may act as a potential molecular target in the treatment of TNBC.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Feminino , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Processamento Alternativo/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo U/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo U/metabolismo , RNA/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Linhagem Celular Tumoral , Via de Sinalização Wnt , Carcinogênese , Proliferação de Células/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas com Domínio LIM/metabolismo , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo
11.
Emerg Microbes Infect ; 11(1): 2785-2799, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36285453

RESUMO

ABSTRACTAcquired immunodeficiency syndrome (AIDS) cannot be completely cured, mainly due to the existence of a latent HIV-1 reservoir. However, our current understanding of the molecular mechanisms underlying the establishment and maintenance of HIV-1 latent reservoir is not comprehensive. Here, using a genome-wide CRISPR-Cas9 activation library screening, we identified E3 ubiquitin ligase F-box protein 34 (FBXO34) and the substrate of FBXO34, heterogeneous nuclear ribonucleoprotein U (hnRNP U) was identified by affinity purification mass spectrometry, as new host factors related to HIV-1 latent maintenance. Overexpression of FBXO34 or knockout of hnRNP U can activate latent HIV-1 in multiple latent cell lines. FBXO34 mainly promotes hnRNP U ubiquitination, which leads to hnRNP U degradation and abolishment of the interaction between hnRNP U and HIV-1 mRNA. In a latently infected cell line, hnRNP U interacts with the ReV region of HIV-1 mRNA through amino acids 1-339 to hinder HIV-1 translation, thereby, promoting HIV-1 latency. Importantly, we confirmed the role of the FBXO34/hnRNP U axis in the primary CD4+ T lymphocyte model, and detected differences in hnRNP U expression levels in samples from patients treated with antiretroviral therapy (ART) and healthy people, which further suggests that the FBXO34/hnRNP U axis is a new pathway involved in HIV-1 latency. These results provide mechanistic insights into the critical role of ubiquitination and hnRNP U in HIV-1 latency. This novel FBXO34/hnRNP U axis in HIV transcription may be directly targeted to control HIV reservoirs in patients in the future.


Assuntos
Proteínas F-Box , Infecções por HIV , Ubiquitina-Proteína Ligases , Latência Viral , Humanos , Ribonucleoproteínas Nucleares Heterogêneas Grupo U/metabolismo , Infecções por HIV/genética , HIV-1 , RNA Mensageiro/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas F-Box/metabolismo
12.
Sci Adv ; 8(31): eabp9153, 2022 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-35921415

RESUMO

Alternative splicing plays key roles for cell type-specific regulation of protein function. It is controlled by cis-regulatory RNA elements that are recognized by RNA binding proteins (RBPs). The MALT1 paracaspase is a key factor of signaling pathways that mediate innate and adaptive immune responses. Alternative splicing of MALT1 is critical for controlling optimal T cell activation. We demonstrate that MALT1 splicing depends on RNA structural elements that sequester the splice sites of the alternatively spliced exon7. The RBPs hnRNP U and hnRNP L bind competitively to stem-loop RNA structures that involve the 5' and 3' splice sites flanking exon7. While hnRNP U stabilizes RNA stem-loop conformations that maintain exon7 skipping, hnRNP L disrupts these RNA elements to facilitate recruitment of the essential splicing factor U2AF2, thereby promoting exon7 inclusion. Our data represent a paradigm for the control of splice site selection by differential RBP binding and modulation of pre-mRNA structure.


Assuntos
Ribonucleoproteínas Nucleares Heterogêneas Grupo L , Precursores de RNA , Processamento Alternativo , Sítios de Ligação , Éxons , Ribonucleoproteínas Nucleares Heterogêneas Grupo L/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo L/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas Grupo U/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo U/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas/genética , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Proteína de Translocação 1 do Linfoma de Tecido Linfoide Associado à Mucosa/genética , Proteína de Translocação 1 do Linfoma de Tecido Linfoide Associado à Mucosa/metabolismo , Precursores de RNA/genética , Sítios de Splice de RNA , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
13.
Diabetes ; 71(9): 1915-1928, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35771993

RESUMO

Dysregulation of hepatic VLDL secretion contributes to the pathogenesis of metabolic diseases, such as nonalcoholic fatty liver disease (NAFLD) and hyperlipidemia. Accumulating evidence has suggested that long noncoding RNAs (lncRNAs) had malfunctioning roles in the pathogenesis of NAFLD. However, the function of lncRNAs in controlling hepatic VLDL secretion remains largely unillustrated. Here, we identified a novel lncRNA, lncRNA regulator of hyperlipidemia (lncRHL), which was liver-enriched, downregulated on high-fat diet feeding, and inhibited by oleic acid treatment in primary hepatocytes. With genetic manipulation in mice and primary hepatocytes, depletion of lncRHL induces hepatic VLDL secretion accompanied by decreased hepatic lipid contents. Conversely, lncRHL restoration reduces VLDL secretion with increased lipid deposition in hepatocytes. Mechanistic analyses indicate that lncRHL binds directly to heterogeneous nuclear ribonuclear protein U (hnRNPU), and thereby enhances its stability, and that hnRNPU can transcriptional activate Bmal1, leading to inhibition of VLDL secretion in hepatocytes. lncRHL deficiency accelerates the protein degradation of hnRNPU and suppresses the transcription of Bmal1, which in turn activates VLDL secretion in hepatocytes. With results taken together, we conclude that lncRHL is a novel suppressor of hepatic VLDL secretion. Activating the lncRHL/hnRNPU/BMAL1/MTTP axis represents a potential strategy for the maintenance of intrahepatic and plasma lipid homeostasis.


Assuntos
Fatores de Transcrição ARNTL , Proteínas de Transporte , Ribonucleoproteínas Nucleares Heterogêneas Grupo U , Hiperlipidemias , Fígado , RNA Longo não Codificante , Fatores de Transcrição ARNTL/metabolismo , Animais , Proteínas de Transporte/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas Grupo U/metabolismo , Hiperlipidemias/metabolismo , Lipoproteínas VLDL/metabolismo , Fígado/metabolismo , Camundongos , Hepatopatia Gordurosa não Alcoólica/patologia , Proteínas Nucleares/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Triglicerídeos/metabolismo
14.
Bioengineered ; 13(5): 11469-11486, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35535400

RESUMO

Coronary artery disease (CAD) represents a fatal public threat. The involvement of extracellular vesicles (EVs) in CAD has been documented. This study explored the regulation of embryonic stem cells (ESCs)-derived EVs-hnRNPU-actin complex in human coronary artery endothelial cell (HCAEC) growth. Firstly, in vitro HCAEC hypoxia models were established. EVs were extracted from ESCs by ultracentrifugation. HCAECs were treated with EVs and si-VEGF for 24 h under hypoxia, followed by assessment of cell proliferation, apoptosis, migration, and tube formation. Uptake of EVs by HCAECs was testified. Additionally, hnRNPU, VEGF, and RNA Pol II levels were determined using Western blotting and CHIP assays. Interaction between hnRNPU and actin was evaluated by Co-immunoprecipitation assay. HCAEC viability and proliferation were lowered, apoptosis was enhanced, wound fusion was decreased, and the number of tubular capillary structures was reduced under hypoxia, whereas ESC-EVs treatment counteracted these effects. Moreover, EVs transferred hnRNPU into HCAECs. EVs-hnRNPU-actin complex increased RNA Pol II level on the VEGF gene promoter and promoted VEGF expression in HCAECs. Inhibition of hnRNPU or VEGF both annulled the promotion of EVs on HCAEC growth. Collectively, ESC-EVs-hnRNPU-actin increased RNA Pol II phosphorylation and VEGF expression, thus promoting HCAEC growth.


Assuntos
Actinas , Células Endoteliais , Vesículas Extracelulares , Ribonucleoproteínas Nucleares Heterogêneas Grupo U , RNA Polimerase II , Actinas/metabolismo , Proliferação de Células/genética , Vasos Coronários/citologia , Células Endoteliais/metabolismo , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas Grupo U/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo U/metabolismo , Humanos , Hipóxia/metabolismo , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
15.
Curr Opin Genet Dev ; 72: 38-44, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34823151

RESUMO

Scaffold attachment factor A (SAF-A) or hnRNP U is a nuclear RNA-binding protein with a well-documented role in processing newly transcribed RNA. Recent studies also indicate that SAF-A can oligomerise in an ATP-dependent manner and interact with RNA to form a dynamic nuclear mesh. This mesh is thought to regulate nuclear and chromatin architecture, yet a mechanistic understanding is lacking. Here, we review developments in the field to understand how the SAF-A/RNA mesh affects chromatin organisation in interphase and mitosis. As SAF-A has an intrinsically disordered domain we discuss how the chromatin mesh is related to nuclear phase-separated condensates, which in other situations have been shown to regulate transcription and cell functions. Finally, we infer possible links between diseases emerging from SAF-A mutations and its role in chromatin organisation and regulation.


Assuntos
Cromatina , Ribonucleoproteínas Nucleares Heterogêneas Grupo U , Núcleo Celular/metabolismo , Cromatina/genética , Cromatina/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas Grupo U/química , Ribonucleoproteínas Nucleares Heterogêneas Grupo U/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo U/metabolismo , Interfase , Proteínas de Ligação a RNA/metabolismo
16.
Theranostics ; 11(20): 10030-10046, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34815802

RESUMO

Background: Sertoli cells are essential regulators of testicular fate in the differentiating gonad; however, its role and underlying molecular mechanism of regulating testicular development in prepubertal testes are poorly understood. Although several critical regulatory factors of Sertoli cell development and function have been identified, identifying extrinsic factors that regulate gonocyte proliferation and migration processes during neonatal testis development remains largely unknown. Methods: We used the Sertoli cell-specific conditional knockout strategy (Cre/Loxp) in mice and molecular biological analyses (Luciferase assay, ChIP-qPCR, RNA-Seq, etc.) in vitro and in vivo to study the physiological roles of hnRNPU in Sertoli cells on regulating testicular development in prepubertal testes. Results: We identified a co-transcription factor, hnRNPU, which is highly expressed in mouse and human Sertoli cells and required for neonatal Sertoli cell and pre-pubertal testicular development. Conditional knockout of hnRNPU in murine Sertoli cells leads to severe testicular atrophy and male sterility, characterized by rapid depletion of both Sertoli cells and germ cells and failure of spermatogonia proliferation and migration during pre-pubertal testicular development. At molecular levels, we found that hnRNPU interacts with two Sertoli cell markers WT1 and SOX9, and enhances the expression of two transcriptional factors, Sox8 and Sox9, in Sertoli cells by directly binding to their promoter regions. Further RNA-Seq and bioinformatics analyses revealed the transcriptome-wide of key genes essential for Sertoli cell and germ cell fate control, such as biological adhesion, proliferation and migration, were deregulated in Sertoli cell-specific hnRNPU mutant testes. Conclusion: Our findings demonstrate an essential role of hnRNPU in Sertoli cells for prepubertal testicular development and testis microenvironment maintenance and define a new insight for our understanding of male infertility therapy.


Assuntos
Ribonucleoproteínas Nucleares Heterogêneas Grupo U/metabolismo , Células de Sertoli/metabolismo , Proteínas WT1/metabolismo , Animais , Diferenciação Celular/genética , Expressão Gênica/genética , Regulação da Expressão Gênica/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo U/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fatores de Transcrição SOX9/metabolismo , Fatores de Transcrição SOXE/metabolismo , Testículo/embriologia , Testículo/metabolismo , Fatores de Transcrição/genética , Transcriptoma/genética , Proteínas WT1/genética
17.
Cell Cycle ; 20(21): 2309-2320, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34585626

RESUMO

Alzheimer's disease (AD) is a progressive neuro-degenerative disease characterized by dementia. MicroRNAs (miRNAs) are involved in many diseases, including AD. MiR-132-3p has been identified to be downregulated in AD. In this study, we explored the effects of miR-132-3p on neuron apoptosis and impairments of learning and memory abilities. Aß1-42-stimulated SH-SY5Y cells were used as in vitro models of AD. An AD-like homocysteine (Hcy) rat model was established to evaluate the effects of miR-132-3p on AD pathogenesis in vivo. RIP, RNA pull down and luciferase reporter assays were conducted to investigate the relationship between miR-132-3p and its downstream target genes. The viability and apoptosis of SH-SY5Y cells were measured by CCK-8 and TUNEL assays. The rat spatial learning and memory abilities were accessed using Morris water maze test. Results indicated that miR-132-3p was downregulated in SH-SY5Y cells after Aß1-42 treatment and promoted cell apoptosis. Mechanistically, miR-132-3p targeted heterogeneous nuclear ribonucleoprotein U (HNRNPU). HNRNPU acted as an RNA binding protein (RBP) to regulate the mRNA stability of ß-site amyloid precursor protein cleaving enzyme 1 (BACE1). Overexpression of HNRNPU or BACE1 reversed the effects of miR-132-3p overexpression on the viability and apoptosis of Aß1-42-treated SH-SY5Y cells. In vivo experiments revealed the downregulation of miR-132-3p in the hippocampus of Hcy-treated rats. MiR-132-3p suppressed levels of apoptotic genes in hippocampus and reduced impairments of learning and memory abilities in Hcy-treated rats. In conclusion, miR-132-3p reduces apoptosis of SH-SY5Y cells and alleviates impairments of learning and memory abilities in AD rats by modulating the HNRNPU/BACE1 axis.


Assuntos
Doença de Alzheimer , Secretases da Proteína Precursora do Amiloide , Ácido Aspártico Endopeptidases , Ribonucleoproteínas Nucleares Heterogêneas Grupo U , MicroRNAs , Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/genética , Animais , Apoptose/genética , Ácido Aspártico Endopeptidases/genética , Linhagem Celular Tumoral , Regulação para Baixo/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo U/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo U/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Neurônios/metabolismo , Ratos
18.
J Cell Biol ; 219(11)2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-33053167

RESUMO

During mitosis, the genome is transformed from a decondensed, transcriptionally active state to a highly condensed, transcriptionally inactive state. Mitotic chromosome reorganization is marked by the general attenuation of transcription on chromosome arms, yet how the cell regulates nuclear and chromatin-associated RNAs after chromosome condensation and nuclear envelope breakdown is unknown. SAF-A/hnRNPU is an abundant nuclear protein with RNA-to-DNA tethering activity, coordinated by two spatially distinct nucleic acid-binding domains. Here we show that RNA is evicted from prophase chromosomes through Aurora-B-dependent phosphorylation of the SAF-A DNA-binding domain; failure to execute this pathway leads to accumulation of SAF-A-RNA complexes on mitotic chromosomes, defects in metaphase chromosome alignment, and elevated rates of chromosome missegregation in anaphase. This work reveals a role for Aurora-B in removing chromatin-associated RNAs during prophase and demonstrates that Aurora-B-dependent relocalization of SAF-A during cell division contributes to the fidelity of chromosome segregation.


Assuntos
Aurora Quinase B/metabolismo , Núcleo Celular/genética , Cromatina/química , Cromossomos Humanos/química , Ribonucleoproteínas Nucleares Heterogêneas Grupo U/metabolismo , Mitose , RNA/metabolismo , Aurora Quinase B/genética , Cromatina/genética , Cromossomos Humanos/genética , Células HEK293 , Ribonucleoproteínas Nucleares Heterogêneas Grupo U/genética , Humanos , Fosforilação , RNA/genética
19.
Cancer Med ; 9(11): 3829-3839, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32239804

RESUMO

BACKGROUND: Non-small cell lung cancer (NSCLC) occupies the majority of lung cancer cases and is notorious for the awful prognosis. LIM domains-containing 1 (LIMD1) is suggested as a tumor suppressor in lung cancer, but its mechanism in NSCLC remains elusive. Present study aimed to uncover the mechanism of LIMD1 in NSCLC. METHODS: qRT-PCR was performed to analyze the level of LIMD1. The functions of LIMD1 in NSCLC cells were evaluated by CCK-8, EdU, and caspase-3 activity assays. RIP and pull-down assays were applied to determine the interaction of LIMD1 with heterogeneous nuclear ribonucleoprotein U (hnRNP U) and LIMD1-AS1. RESULTS: LIMD1 was downregulated in NSCLC samples and cells. Functionally, LIMD1 hindered proliferation and drove apoptosis in NSCLC cells. Moreover, long noncoding RNA (lncRNA) LIMD1 antisense RNA 1 (LIMD1-AS1) was downregulated in NSCLC samples and cell lines. LIMD1-AS1 knockdown abrogated NSCLC cell growth in vitro and in vivo. Mechanistically, LIMD1-AS1 stabilized LIMD1 mRNA through interacting with hnRNP U. Rescue experiments suggested that LIMD1-AS1 repressed NSCLC progression through LIMD1. CONCLUSIONS: LIMD1-AS1 suppressed NSCLC progression through stabilizing LIMD1 mRNA via hnRNP U, providing new thoughts for the improvement of molecular-targeted therapy for NSCLC.


Assuntos
Biomarcadores Tumorais/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Regulação Neoplásica da Expressão Gênica , Ribonucleoproteínas Nucleares Heterogêneas Grupo U/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas com Domínio LIM/metabolismo , Estabilidade de RNA , RNA Longo não Codificante/genética , Animais , Apoptose , Biomarcadores Tumorais/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Proliferação de Células , Feminino , Ribonucleoproteínas Nucleares Heterogêneas Grupo U/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas com Domínio LIM/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Prognóstico , RNA Antissenso/genética , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
20.
J Hematol Oncol ; 13(1): 24, 2020 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-32216806

RESUMO

BACKGROUND: Aerobic glycolysis is a hallmark of metabolic reprogramming that contributes to tumor progression. However, the mechanisms regulating expression of glycolytic genes in neuroblastoma (NB), the most common extracranial solid tumor in childhood, still remain elusive. METHODS: Crucial transcriptional regulators and their downstream glycolytic genes were identified by integrative analysis of a publicly available expression profiling dataset. In vitro and in vivo assays were undertaken to explore the biological effects and underlying mechanisms of transcriptional regulators in NB cells. Survival analysis was performed by using Kaplan-Meier method and log-rank test. RESULTS: Hepatocyte nuclear factor 4 alpha (HNF4A) and its derived long noncoding RNA (HNF4A-AS1) promoted aerobic glycolysis and NB progression. Gain- and loss-of-function studies indicated that HNF4A and HNF4A-AS1 facilitated the glycolysis process, glucose uptake, lactate production, and ATP levels of NB cells. Mechanistically, transcription factor HNF4A increased the expression of hexokinase 2 (HK2) and solute carrier family 2 member 1 (SLC2A1), while HNF4A-AS1 bound to heterogeneous nuclear ribonucleoprotein U (hnRNPU) to facilitate its interaction with CCCTC-binding factor (CTCF), resulting in transactivation of CTCF and transcriptional alteration of HNF4A and other genes associated with tumor progression. Administration of a small peptide blocking HNF4A-AS1-hnRNPU interaction or lentivirus-mediated short hairpin RNA targeting HNF4A-AS1 significantly suppressed aerobic glycolysis, tumorigenesis, and aggressiveness of NB cells. In clinical NB cases, high expression of HNF4A-AS1, hnRNPU, CTCF, or HNF4A was associated with poor survival of patients. CONCLUSIONS: These findings suggest that therapeutic targeting of HNF4A-AS1/hnRNPU/CTCF axis inhibits aerobic glycolysis and NB progression.


Assuntos
Fator de Ligação a CCCTC/metabolismo , Glicólise , Ribonucleoproteínas Nucleares Heterogêneas Grupo U/metabolismo , Neuroblastoma/metabolismo , RNA Longo não Codificante/metabolismo , Fator de Ligação a CCCTC/genética , Linhagem Celular Tumoral , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Fator 4 Nuclear de Hepatócito/genética , Fator 4 Nuclear de Hepatócito/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas Grupo U/genética , Humanos , Neuroblastoma/genética , Neuroblastoma/patologia , Mapas de Interação de Proteínas , RNA Longo não Codificante/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...